Mixtures of g-Priors in Generalized Linear Models
ثبت نشده
چکیده
Mixtures of Zellner’s g-priors have been studied extensively in linear models and have been shown to have numerous desirable properties for Bayesian variable selection and model averaging. Several extensions of g-priors to Generalized Linear Models (GLMs) have been proposed in the literature; however, the choice of prior distribution of g and resulting properties for inference have received considerably less attention. In this paper, we unify mixtures of g-priors in GLMs by assigning the truncated Compound Confluent Hypergeometric (tCCH) distribution to 1/(1 + g), which encompasses as special cases several mixtures of g-priors in the literature, such as the hyper-g, Beta-prime, truncated Gamma, incomplete inverse-Gamma, benchmark, robust, hyper-g/n, and intrinsic priors. Through an integrated Laplace approximation, the posterior distribution of 1/(1+g) is in turn a tCCH distribution, and approximate marginal likelihoods are thus available analytically, leading to “Compound Hypergeometric Information Criteria” for model selection. We discuss the local geometric properties of the g-prior in GLMs and show how the desiderata for model selection proposed by Bayarri et al, such as asymptotic model selection consistency, intrinsic consistency, and measurement invariance may be used to justify the prior and specific choices of the hyper parameters. We illustrate inference using these priors and contrast them to other approaches via simulation and real data examples. An R package on CRAN is available to implement the methodology.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملApproximate Bayesian Model Selection with the Deviance Statistic
Bayesian model selection poses two main challenges: the specification of parameter priors for all models, and the computation of the resulting Bayes factors between models. There is now a large literature on automatic and objective parameter priors in the linear model. One important class are g-priors, which were recently extended from linear to generalized linear models (GLMs). We show that th...
متن کاملAn Information Matrix Prior for Bayesian Analysis in Generalized Linear Models with High Dimensional Data.
An important challenge in analyzing high dimensional data in regression settings is that of facing a situation in which the number of covariates p in the model greatly exceeds the sample size n (sometimes termed the "p > n" problem). In this article, we develop a novel specification for a general class of prior distributions, called Information Matrix (IM) priors, for high-dimensional generaliz...
متن کاملGeneralized Beta Mixtures of Gaussians
In recent years, a rich variety of shrinkage priors have been proposed that have great promise in addressing massive regression problems. In general, these new priors can be expressed as scale mixtures of normals, but have more complex forms and better properties than traditional Cauchy and double exponential priors. We first propose a new class of normal scale mixtures through a novel generali...
متن کاملSparse Bayes estimation in non-Gaussian models via data augmentation
In this paper we provide a data-augmentation scheme that unifies many common sparse Bayes estimators into a single class. This leads to simple iterative algorithms for estimating the posterior mode under arbitrary combinations of likelihoods and priors within the class. The class itself is quite large: for example, it includes quantile regression, support vector machines, and logistic and multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016